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Abstract: In this work we study how to compute the brauer 
algebra discriminant and also define a matrix Zm, k(x). 
 

INTRODUCTION: 
In the beginning of 20th century invariant theorists began to 
study the commuting algebras of the tensor powers of 
defining representations for the classical groups G = 
Gl(n,C), Sl(n,C), O(n,C), So(n,C)  and  Sp(2m,C). 
These algebras may be defined as follows. Let G be a 
classical group. Let V be its defining representation, and let 
TfV be the f th  tensor power of V. (i.e.,) TfV = V1   V2   
...  Vf.. The group action of G on V lifts to the diagonal 
action of G on T

fV defined by g.(V1  V2 ....  Vf ) = 
(gV1)  (gV2)  ... (gVf). Define the commuting algebra 
EndG (TfV) of this action to be the algebra of all linear 
transformations of TfV which commute with this action of 
G. In the case of G = Gl (n, C) Schur showed that there is a 
surjective algebra homomorphism from CSf onto End Gl 

(n,C)(T
f Cn) , which is an isomorphism for f  n. The kernel 

of this homomorphism, gives a complete explanation of the 
centralizer algebra End Gl (n,C)(T

f Cn).  
In 1937, when G = O(n,C) and Sp(2m,C) Richard Brauer 
defined two algebras Af

(x)and Bf
(x) where ‘f’ is a positive 

integer and ‘x’ is a real indeterminate. The surjective 
algebra homomorphism for the algebras Af

(x)and Bf
(x) are 

constructed as follows:- 
f 

(n): Af
(n)  End o(n,R) (T

fRn) 
 
f 

(2m): Bf 
(2m)      End sp(2m,R)(T

f R2m) 

 
If n and m are large enough then these homomorphisms are 
isomorphisms. When these homomorphisms are not an 
isomorphism then Richard Brauer failed to give the 
explanation of the kernel of the maps. In order to give a 
clear explanation of these kernels, Phil  Hanlon and David 
Wales began to study the structure of the algebras Af

(x)  and 
Bf

(x)  where ‘x’ is an arbitrary real. The algebras Af
(x)  and 

Bf
(-x)  are isomorphic to each other. So it was only 

necessary to study the algebra Af
(x). 

The authors were able to describe the radicals of Af
(x) and 

the matrix ring decomposition of Af
(x) /Rad (Af

(x)). Later 
this problem was reduced to the problem of computing the 
ranks of certain combinatorially defined matrices Zm,k(x).  
1. Defining the matrix Zm,k(x): 
The computational problem will be to compute the rank of 
certain combinatorially defined matrices Zm, k(x) for every 
complex number x.  The determinant of Zm, k(x) is known 
to be nonzero as a polynomial in x. So the rank of Zm, k(x) 
is completely determined except at a finite number of 
values of x. The finite values of x are those x that are the 

roots of det (Zm, k(x)). So the computational problem breaks 
into two parts:- 
1. Compute the roots of det (Zm, k(x)). 
2. For each root r, compute the rank of  Zm, k(r)

 

1.1. Definition:  
Let m and k be nonnegative integers. An (m, k) partial 1-
factor is a graph with m+2k points and k lines which 
satisfies:- 
1. Every point has degree 0 or 1. 
2. The m points of degree 0 are labeled with the 
numbers 1, 2... m. 
For example, 

 
1.2. Notation: 
Here we use ‘f’ to denote m+2k, and lower case Greek 
letters ,1,2,... to denote partial 1-factors. Bm, k denote the 
set of all (m, k) partial 1–factors. Let Vm, k be the complex 
vector space with basis Bm, k. The points of degree ‘0’ in a 
partial 1-factor  are called the free points of .  
1.3. Definition: 
Let 1 and 2 be elements of Bm, k. The union of δı and δ2 is 
a graph consisting of some number (δı,δ2) of cycles 
together with m paths P1...Pm. If u is an endpoint of Pi, then 
u is a free point of either δı or δ2.  Hence, the end points of 
each path are labeled. We say δı and δ2 are consistent if 
each path of δı U δ2 has the property that its endpoints have 
the same label. Otherwise, δı and δ2 are inconsistent. 
1.4. Definition: 
Let m and k be nonnegative integers. Define a matrix Zm, 

k(x) with rows and columns indexed by Bm,k. For δı,δ2 
Bm, k. let the (δı,δ2)

th
  entry of Zm, k(x) be defined by 

 
x (δ1

,δ
2
) if δı and δ2 are, 

0              if δı and δ2 are 
inconsistent. 
 
 

 
1.5. Note: 
Each diagonal entry of Zm, k(x) is xk  and that every off-
diagonal entry is either 0 or xe with e<k. So the determinant 
of Zm, k(x) is a nonzero polynomial in x of degree Bm,k. 
1.6. Example: 
 Let f=4 and m=2. In this case, the matrix Zm, k(x) 
is 12 x 12. 

is a (6, 2) factor. 

Zm,k(x)δı,δ2    =  
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 An ordered basis for Bm,k is given below: 
              

  
 
Thus, the matrix Zm,k(x)  with respect to this is given by  
  
                                   x   0   1   0   0   1   1   0   0   1   0   0 
                                   0   x   0   1   1   0   0   1   1   0   0   0 
                                   1   0   x   0   1   0   1   0   0   0   0   1 
                                   0   1   0   x   0   1   0   1   0   0   1   0 
 Z2, 1(x) =                    0   1   1   0   x   0   0   0   1   0   0   1 
                                   1   0   0   1   0   x   0   0   0   1   1   0                       
                                   1   0   1   0   0   0   x   0   1   0   1   0 
                                   0   1   0   1   0   0   0   x   0   1   0   1 
                                   0   1   0   0   1   0   1   0   x   0   1   0 
                                   1   0   0   0   0   1   0   1   0   x   0   1 
                                   0   0   0   1   0   1   1   0   1   0   x   0 
                                   0   0   1   0   1   0   0   1   0   1   0   x 
 
 
The size of Bm, k is 
 Bm, k = (m+2k)! /2k k!   
Here m=2, k=1. 
for the above the size of Bm,k is  
(2+2*1)! / 21 1! = 4! /2 = 4*3/2 =6 
           
1.7. Theorem: 
Let G be a finite group with irreducible representation 
Ф1,...,Фc. Let Ф be a representation of G on a complex vector 
space V which decomposes into irreducible as Ф=Σm¡Фi; i: 
1 to c 
Let Z be a linear transformation of V which commutes with 
the action of G. Then Z is similar to a matrix which is a 
direct sum over i of matrices Zi, where Zi is a mi x mi 
matrix repeated in the direct sum deg (Фi) times. Moreover, 
Zi can be computed as follows:  
Step 1: Choose a complete set of Primitive orthogonal 
idempotent 
 
   ev

(u) : 1≤ u ≤c, 1≤ V ≤deg (Фu)
  in the group algebra CG. 

Step 2: Find mi vectors v1 ... vmi V such that Ф (e1
(i)) vmi

   

are linearly independent. 
Step 3:- 
Let v1

(i) be the subspace of V spanned by Ф (e1
(i)) v1 ... 

Ф(e1
(i)) Vmi. The space v1

(i)  is Z- invariant and Zi is the 
restriction of Z to v1

(i). 
 

2. COMPUTING THE BRAUER ALGEBRA 

DISCRIMINANTS 
2.1. Lemma: 
Let µ and   λ be partitions of m and f, respectively, and let 
m (µ, λ) denote the multiplicity of Ф  Фµ in Vm, K .Then 
 m (µ, λ)   =        g 

                                                  ├2k 

                                                   even 

Proof: 
 
 Let G be Sf  x Sm  
 Let H be the subgroup (S2k x Sm ) x  Sm , and let S 
be the subgroup of H given by 
 S =  (π ,σ, σ ):  , π є B2K, σ Sym(m) 
Here, B2K denotes the hyperoctahedral group of k x k 
signed permutation matrices, which is considered to be a 
subgroup of S2k. 
G acts as a transitive permutation group on the set Bm,k. So 
the action of G on Vm,k is the induction of the trivial 
character  from the stabilizer of any ∆◦ є Bm,k to G 
Choose 
We have the stabilizer of ∆0 is S.  
Using a theorem of Littlewood and some well- known facts 

about the structure of group algebras, we  have, 
 
 inds

H () =               φη  φμ  φμ 

                                                     ├2k              ├m 

                                    even 
By the Littlewood – Richardson rule we have for each η,μ. 
  
indH

G (φη φμφμ) =    Σ   gλμη  φλφμ 

                                    ├f    
Hence the theorem is proved. 
Now, fix partitions μ├ m and ├f.If  is not cntained in λ, 
then gλμη =O 

for all η, 
  So m(μ, λ) = 0. 
Therefore, we may assume that μ λ. 
For that, we will have to identify a particular idempotent 
‘e’ in the group algebra of G corresponding to the 
irreducible representation φλ  φμ. 
To obtain the idempotent ‘e’, first let S0 be the minimal 
standard young tableau of shape μ. 
Therefore, 
                         1         2            ...                    μ1 

 
 S0 =  (μ1+1)    (μ1+2)       ...      ( μ1+μ2) 
 

  (μ1+...+ μl-1+1)        ... m 

Next, let t0 be the standard young tableau of shape λ which  
agrees with  S0 on the intersection of λ and μ and   which 
has the minimal filling of [λ/ μ]  with m+1,...,f. 
Therefore, 
 

∆0 = 
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           1                      2           ...  1                
(m+1) ... (m+1-1) 
t0 = (1+1)           (+2)           ... (1+2)         (m+1-1+1)  
         
       (1+... l-1+1)        ...            m 
 
        (f-d+1)         ...                         f    
 
 Then ‘e’ defined  by e = etox eso is ‘e’ is an idempotent in 
the group algebra of G corresponding to the irreducible 
φλφ μ. 
 
2.2. Definition:-  
The pair (λ, μ) is μ -  extermal if [λ/ μ] has  no pair of 
squares in the same row or the same column. 
If (λ, μ) is μ – extremal, then the tableau t0 looks like. 
                                                                                                       (m+1) 
                          
                                                                                             (m+2) 
 
                                                                                  (m+3)  
                                                                              *         
               s0                                                       *  
                                                                    * 
                                                                * 
                                                           F 

      
Any lattice permutation of length 2k and shape  η 
constitutes a littlewood – Richardson filling of [λ/ μ]. So 
for all η we   have, 
   gλµη = f 

 Thus, m(µ,λ)   =     ∑  f 

                                    even   
      = 1.3....(2k-1). 
 
Hence the multiplicity m(µ,λ) equals the number of 1-
factors on 2k points. 
2.3. Note:- 
For any pair (λ,µ) we have gλµη ≤ f 

In general m(µ,λ)≤1.3..........(2k –1). 
Equality is achieved if and only if (λ,µ) is µ -extremal. 
 
2.4. Definition: 
Let ∆  be a 1- factor with 2k points. Define the (m, k) 
partial 1- factor V∆ 

  as follows: 
1. V∆  has free points 1,2............m. The free 
point j has label j. 
2. For every edge (u,v) of  ∆ we have the edge 
(m+u, m+v) of V∆ 
The following lemma will not only show that the ev∆ 

linearly independent, it will also greatly streamline our 
computation. This result is difficult to prove in the  case of 
general pairs(λ,µ). 
 
2.5. Lemma: 
Let (λ,µ) be µ-extremal and define t0, s0 as above. Let  , σ, 
’ and σ’be in Cto   Rto Cso  and Rso, respectively (so, sgn () 
sgn (’) (σ, ’σ’) is one of the terms occurring in the 
idempotent e = eto x eso). Suppose that. 
     (σ, ’σ’) V∆  = V∆1, where ∆ and ∆1 are 1-factors. Then 

1. ∆ = ∆1, 
2.  and σ both fix t0 / s0 point wise. 
3.  restricted to s0 equals ’ and σ restricted to s0 
equals  σ’ . 
In particular, {eV∆  : ∆ is a 1- factor with 2k points} is a 
basis for eVm,k. 
Proof: 
Let ’ σ’ acts on an m,k

 Partial 1-factor by changing the 
labels on the free points by (’, σ’). 
Since the free points of both ∆ and ∆, are 1,2 ,...,m, it 
follow that σ Preserves the sets { 1,2,...,m} and 
{m+1,...,f}. 
In t0, each square m+u(u=1,2,...,2k) is at the right-hand end 
of the row containing  it and at the bottom of the column 
containing it. 
So σ moves the point m+u weakly to the left. Since the 
image of m+u under σ is in the set {m+1,...,f}, the 
permutation  must then move σ(m+u) down to the bottom 
of the column it occupies. 
Thus, (σ) (m+u) = m+v, where v≥u. 
It follows that σ fixes the set {m+1,..,f} pointwise. 
Now, consider σ x ’ σ’  on s0. The point  j is moved by 
(σ, ’σ’) to σ(j) and its label is changed to (’σ’ )j. 
Since (σ, ’σ’) V∆ = V∆, we have (σ)j = (’σ’) j for all j. 
Thus, σ = ’σ1’, so = ’ and σ = σ1 where these last three  
equalities refer to σ,   and σ restricted to the points of s0.  
Suppose Σ∆a∆eV∆=0.Then Σ∆a∆V∆=0,and so all a∆=0,as the 
V∆  are linearly independent. 
Thus the set { eV∆} is a basis. 
     
2.6. Definition: 
Let (ai,bi)(i=1,2,...,2k) be the co-ordinates of the squares of 
[\].For each i define sets C(i)C t0 and R(i)Rt0  as 
follows: 
1. C(i) contains the identity permutation as well as the (ai-1) 
involutions i,j which exchange the elements of t0 in squares 
(ai,bi) and (j,bi) 
2. R(i) contains the identity permutation as well as the (bi-1) 
involutions i,j which exchange the elements of t0 in squares 
(ai,bi) and (ai,j) 
Let C be the set of all products (1)...(2k),where (i) ЄC(i),and 
let R be the set of all products (1)... (2k) where (i) ЄR(i) 

C and R are subsets of Ct0 and Rt0 of sizes. 

 C = a1a2...a2k,  R = b1b2...b2k, 

Hanlon and Wales algorithm:  
Let G be a finite group with irreducible representation 
Ф1,...,Фc.Let Ф be a representation of G on a complex vector 
space V which decomposes into irreducible as 
Ф=Σm¡Фi;i:1 to c 
Let Z be a linear transformation of  V which commutes 
with the action of G. Then Z is similar to a matrix which is 
a direct sum over i of matrices Zi, where Zi is an mi x mi 
matrix repeated in the direct sum deg(Фi)times. Moreover, 
Zi can be computed as follows:  
Step 1 : Choose a complete set of Primitive orthogonal 
idempotents 
  ev

(u) : 1≤ u ≤c, 1≤ V ≤deg(Фu)
   in the group algebra CG. 

Step 2: Find mi vectors v1....... vmi V such that Ф(e1
(i)) vmi

   

are linearly independent. 
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Step 3:- 
Let v1

(i) be the subspace of V spanned by Ф(e1
(i)) v1 ... 

Ф(e1
(i)) Vmi. The space v1

(i)  is Z- invariant and Zi is the 
restriction of Z to v1

(i). 
The above algorithm will compute the VΔ2, VΔ1 entry  in 
Z,(x) as a sum of terms of the form ={(,’’) VΔ2, 
VΔ1} where C,R, ’Cs0,’Rs0. For  a fixed pair (r, 
σ) Є С X R  there is atmost one pair (r, , σ,) Є Сso x Rso for 
which  is nonzero. 
We next write down a method for computing = Υ’ σ’.  
given (Υ,σ ) V2,  and V1,  In the description below we 
will assume that the in put is δı= Υ σ V2  and δ2 = V1. 
2.7. Definition:  
Let δı and δ2 be (m, k) partial 1- factors. Define an  element 
 (δı,δ2) in the group algebra CSm  according to the 
following algorithm. 
For each i in the set { 1,2,...,m} find the unique path in δı 
υδ2 which begins at the free point of  δı labelled i and ends 
at some other free point  y. If y is a free point   of δı, then 
(δı,δ2)=0 and algorithm stops. Otherwise, y  is a free point 
of δ2.Let  (δı,δ2)(i) be the label on y. 
When this algorithm finishes, we will have either, (δı,δ2) 
= 0 or else (δı,δ2) Є Sm. For δı,δ2 both (m, k) partial 1-
factors and r a standard young tableau of size m, define 
Υ(δı,δ2) by 
      
  
 Υ(δı,δ2) =      0  if (δı,δ2) = 0 the coefficient of (δı,δ2)  
    in the young symmetrizer  
                                          er   if (δı,δ2) Є Sm   
    
 
2.8. Lemma:  
Let Υ = Υ(1) ... Υ(2k) be in C and σ = σ(1) .... σ(2k) are  not 
identity. Then so(Υ σ V2, V1) = 0 
Proof:- 
Fix i such that Υ(i) =(u, bi) with u<ai and σ(i) = (ai,v)with V< 
bi. 
Let α and β be the labels in the squares (u, bi) amd (ai,V) of 
to. 
The row permutation σ moves the label β to the corner 
square (ai, bi).  
Then the column permutation Υ moves the label  to the 
square (u, bi). 
So in Υ σ V2 υ V1, the path beginning at the free point 
labeled β in Υ σ V2 has length 0 and ends at the same 
point of V1 which is a free point labeled α. 
So,  (Υ σ V2, V1) (β) = α. 
But the corner Square (ai, bi) does not exist in so, so (Υ σ 
V2, V2) moves β from position (ai,V) to (U, bi) where bi > 
μаi. 
It is easy to see that such a permutation cannot be written in 
the form Υ σ  where  
  Υ Є Сso  and σ Є Rso. 

So, (So (Υ σ V2, V1, )=0. 
This couplets the proof. 
2.9. Note: 
Let S denote the set of Pairs (Υ σ) with Υ=Υ(1)... Υ(2k) Є C 
and σ = σ(1) .... σ(2K) Є R Such that σ(1)  is the identity  
wherever Υ(i)  is not the identity. 

The size of S is S = (ai+bi-1). 
2.10.Theorem: 
The following algorithm  compute the ∆i,∆j entry in Z,(x). 
Algorithm for each pair (,). 
1.Compute S0  (V∆j,V∆i ). 
2.Compute the number of cycles N in V∆jUV∆i . 
3.Add Sgn()S0  (V∆j,V∆i )xN  to the current value of 
Z,(x). 
Before proving this algorithm consider the case 
=(6,5,4,3,2,1) and =(5,4,3,2,1). 
The size of  original matrix Zm,(x) is a whopping (21)!/48. 
The submatrix Z,(x) is 15x15. The six squares  of [/] 
have  
co-ordinates (1,6),(2,5),(3,4),(4,3),(5,2) and (6,1), so the 
size of S is 66. 
Thus each entry of Z,(x) is computed with 66 passes 
through the main loop of the algorithm in above theorem. 
In practice,this matrix Z,(x) was computed in about one 
hour of CPU time on a CRAY-2. 
In general,we must perform the main loop in the above 
algorithm (ai+bi-1) times.This main loop is carried out in 
O(f+aj(aj+1))steps. 
So, the above Theorem  gives a method to compute each 
entry of Z,(x) in 0{ (ai+bi-1) (f+aj(aj+1)}steps. 
Proof: 
Let e= cs0rs0  be the young symmetrizer indexed by s0. 
According to Theorem, Let G be a finite group with 
irreducible representation Ф1,...,Фc.Let Ф be a representation 
of G on a complex vector space V which decomposes into 
irreducible as Ф=Σm¡Фi;i:1to c 
Let Z be a linear transformation of  V which commutes 
with the action of G. Then Z is similar to a matrix which is 
a direct sum over i of matrices Zi, where Zi is an mi x mi 
matrix repeated in the direct sum deg(Фi)times. Moreover, 
Zi can be computed as follows:  
Step 1 : Choose a complete set of Primitive orthogonal 
idempotents 
  ev

(u) : 1≤ u ≤c, 1≤ V ≤deg(Фu)
   in the group algebra CG. 

Step 2: Find mi vectors v1....... vmi εV such that Ф(e1
(i)) vmi

   

are linearly independent. 
Step 3:- 
Let v1

(i) be the subspace of V spanned by Ф(e1
(i)) v1 ... 

Ф(e1
(i)) Vmi. The space v1

(i)  is Z- invariant and Zi is the 
restriction of Z to v1

(i). 
the matrix Zm,k(x) preserves the subspace {ev∆:∆ is a 1-
factor of size 2k}.By Lemma, Let (λ,µ) be µ-extremal and 
define t0, s0 as above. Let  , σ, ’ and σ’be in Cto   Rto Cso  
and Rso, respectively (so, sgn () sgn (’) (σ, ’σ’) is one of 
the terms occurring in the idempotent e = eto x eso). Suppose 
that. 
     (σ, ’σ’) V∆  = V∆1, where ∆ and ∆1 are 1-factors. Then 
4. ∆ = ∆1, 
5.  and σ both fix t0 / s0 point wise. 
6.  restricted to s0 equals ’ and σ restricted to s0 
equals  σ’ . 
In particular, {eV∆  : ∆ is a 1- factor with 2k points} is a 
basis for eVm,k. 
the co-oeficient of v∆i in ev∆j is 0 for ij and is Rs0Cs0for 
i=j. 

Jeyabharthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4536-4540

www.ijcsit.com 4539



so the i,j entry of Z,(x) is (1/ Rs0Cs0) times the co-
efficient of v∆i in Z,(x)( ev∆j). 
Thus  
  (Z,(x))∆i,∆j          =        1               
                                     (ev∆j, v∆i) 
                                    Rs0Cs0      
                                            
                                         =        1               
                                           Sgn() 
                                    Rs0Cs0 Ct0 

                                                                                   Rt0 

 

                                       =           Sgn(’){(,’’) VΔi, 
                                 ’Cs0 

                                                  ’Rs0 

 

                                                                    
      =                 Sgn() S0  (V∆j,V∆i ) (V∆j,V∆i ). 
            c       R 
 This equality follows from the definition S0. we have   
(Z,(x))∆i,∆j  =           Sgn() S0  (V∆j,V∆i ) (V∆i,V∆i ). 
                             (, )S 
 
    This completes the proof. 

CONCLUSION: 
I have tried to give a brief sketch of some of the main ideas 
underlying the dynamically growing field of Brauer 
Centralizer Algebra. It is the natural Convergence of ideas 
from many areas of mathematics such as algebra, 
combinatorics, with those from computers science, such as 
algorithms, data structures. I feel confident that the current 
trend of studying Brauer Algebra will continue to suggest 
new classes of problems which are can continue for further 
enrichment of his knowledge. 
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