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Abstract: In this work we study how to compute the brauer
algebra discriminant and also define a matrix Z,,, (X).

INTRODUCTION:
In the beginning of 20™ century invariant theorists began to
study the commuting algebras of the tensor powers of
defining representations for the classical groups G =
Gl(n,C), Sl(n,C), O(n,C), So(n,C) and Sp(2m,C).
These algebras may be defined as follows. Let G be a
classical group. Let V be its defining representation, and let
T'V be the f™ tensor power of V. (i.e.,) TV=V, ® V, ®
... ® V;. The group action of G on V lifts to the diagonal
action of G on T'V defined by g.(V; ® V,® ... ® Vi) =
(gV1) ® (gV,) ® ...® (gVy). Define the commuting algebra
Endg (T'V) of this action to be the algebra of all linear
transformations of T'V which commute with this action of
G. In the case of G = Gl (n, C) Schur showed that there is a
surjective algebra homomorphism from CS; onto End g
(n,c)(Tf C") , which is an isomorphism for f < n. The kernel
of this homomorphism, gives a complete explanation of the
centralizer algebra End g (n,c)(Tf ch).
In 1937, when G = O(n,C) and Sp(2m,C) Richard Brauer
defined two algebras A{and B{® where ‘f* is a positive
integer and ‘x’ is a real indeterminate. The surjective
algebra homomorphism for the algebras AYand B are
constructed as follows:-

6™A® 5 End o(nR) (T'R"

x O™ B @™ ——  End spemp)(T'R?™)

If n and m are large enough then these homomorphisms are
isomorphisms. When these homomorphisms are not an
isomorphism then Richard Brauer failed to give the
explanation of the kernel of the maps. In order to give a
clear explanation of these kernels, Phil Hanlon and David
Wales began to study the structure of the algebras A~ and
B{* where ‘x’ is an arbitrary real. The algebras A and
B{™ are isomorphic to each other. So it was only
necessary to study the algebra A

The authors were able to describe the radicals of A and
the matrix ring decomposition of A /Rad (A¢"). Later
this problem was reduced to the problem of computing the
ranks of certain combinatorially defined matrices Z,,,x(X).

1. Defining the matrix Zy, «(x):

The computational problem will be to compute the rank of
certain combinatorially defined matrices Zy,, (x) for every
complex number x. The determinant of Z,, ((x) is known
to be nonzero as a polynomial in x. So the rank of Z,, (x)
is completely determined except at a finite number of
values of x. The finite values of x are those x that are the

www.ijcsit.com

J.Evangeline Jeba,
Assistant Professor
Department of Mathematics,
Lady Doak College, Madurai.

roots of det (Z,,, (x)). So the computational problem breaks
into two parts:-

1. Compute the roots of det (Z,,, k(X)).

2. For each root r, compute the rank of Z,, ()

1.1. Definition:

Let m and k be nonnegative integers. An (m, k) partial 1-
factor is a graph with m+2k points and k lines which
satisfies:-

1. Every point has degree 0 or 1.

2. The m points of degree 0 are labeled with the
numbers 1, 2... m.

For example,

— e

is a (6, 2) factor.

1.2. Notation:

Here we use ‘f” to denote m+2k, and lower case Greek
letters 8,0, 0,.... to denote partial 1-factors. By, \ denote the
set of all (m, k) partial 1-factors. Let V,, x b the complex
vector space with basis By, x. The points of degree ‘0’ in a
partial 1-factor J are called the free points of 5.

1.3. Definition:

Let 8, and 6, be elements of By, . The union of 81 and 6, is
a graph consisting of some number Y(81,8;) of cycles
together with m paths P, _P,,. If u is an endpoint of P;, then
u is a free point of either &1 or 3, Hence, the end points of
each path are labeled. We say 61 and 6, are consistent if
each path of 61 U 9, has the property that its endpoints have
the same label. Otherwise, 61 and 9, are inconsistent.

1.4. Definition:

Let m and k be nonnegative integers. Define a matrix Zj,
«(x) with rows and columns indexed by B,,x. For 81,8, €
B, 1 let the (81,3,)" entry of Z, (x) be defined by

x 75 if 81 and &, are,
0 if &1 and &, are
inconsistent.

Zinx(X)s1,52

1.5 Note:
Each diagonal entry of Z,, (x) is x* and that every off-
diagonal entry is either 0 or x° with e<k. So the determinant
of Z, «(x) is a nonzero polynomial in x of degree | Bk | .
1.6. Example:

Let =4 and m=2. In this case, the matrix Z,, (x)
is 12 x 12.
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An ordered basis for B,y is given below:

~
.=
~

Thus, the matrix Z, x(x) with respect to this is given by

[

7y, 1(x) =

OO —~OoOX oo~ O —
— O~ OoOX OO0 Oo~,O—~O
OC—oOXoO~,OoO—~OoOoOR,O
—OoOX OO~ 000 O~
oOx O~ —~,—~o—~0O0OoO

\x o_‘o»—‘oo_o»—aoo/

SO~ OO~ —~, OO~ O X
S OO P, —) OO =~ O X O
— O O OO~ O = O X O
O, OO~ O~ O X OO
— OO~ O OO K O~ r—O
SR —P OO O X o~ OO —

The size of By, i is

| Bk | = (m+2K)! /25K!
Here m=2, k=1.
for the above the size of By is
(QQ+2*%1)1 /2" 11 =41 /2 =4%3/2 =6

1.7. Theorem:

Let G be a finite group with irreducible representation
O, D, Let ® be a representation of G on a complex vector
space V which decomposes into irreducible as ®=Xm;®;; i:
ltoc

Let Z be a linear transformation of V which commutes with
the action of G. Then Z is similar to a matrix which is a
direct sum over i of matrices Z;, where Z; is a m; X mj
matrix repeated in the direct sum deg (®;) times. Moreover,
Z; can be computed as follows:

Step 1: Choose a complete set of Primitive orthogonal
idempotent

e, : 1<u<c, 1<V <deg (®,) in the group algebra CG.
Step 2: Find m; vectors v ... Vi € V such that @ (e;”) v
are linearly independent.

Step 3:-

Let v;¥) be the subspace of V spanned by @ (e;%) v, ...
CD(e](i)) Vi The space vi¥ is Z- invariant and Z; is the
restriction of Z to vl(i).
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2. COMPUTING THE BRAUER ALGEBRA
DISCRIMINANTS
2.1. Lemma:
Let p and A be partitions of m and f respectively, and let
m (u, A) denote the multiplicity of @) ® @, in V,, x .Then
m (“a }") = Z Zrun
n f2k

1 even

Proof:

Let Gbe S x S,

Let H be the subgroup (Sox x Siy ) X Sp, and let S
be the subgroup of H given by

S= (n,0,0): ,meBy o e Sym(m)
Here, B,k denotes the hyperoctahedral group of k x k
signed permutation matrices, which is considered to be a
subgroup of Sy.
G acts as a transitive permutation group on the set B, x. So
the action of G on Vy is the induction of the trivial
character € from the stabilizer of any A. € B, to G
Choose
We have the stabilizer of A is S.
Using a theorem of Littlewood and some well- known facts

Ay -

. . . - —

about the structure of group algebras, we have,

ind' (&)= @ ® ¢,®0,®0,
n F2k phm
n even

By the Littlewood — Richardson rule we have for each 1 L.

indHG (0@ 0 B9,) = Z gy GO0,
A

Hence the theorem is proved.
Now, fix partitions p |— m and A |—f.If u is not cntained in A,
then gy, -0
for all n,

So m(y, A) =0.
Therefore, we may assume that p cA.
For that, we will have to identify a particular idempotent
‘e’ in the group algebra of G corresponding to the
irreducible representation ¢; ® Q.
To obtain the idempotent ‘e’, first let Sy be the minimal
standard young tableau of shape p.
Therefore,

So= (utl) (m+2) (Hi+ko)

(H1+...+ Hl»l+l) ..M

Next, let ty be the standard young tableau of shape A which
agrees with Sj on the intersection of A and p and which
has the minimal filling of [A/ p] with m+1,....f.

Therefore,
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(m+l) (m+7\.1-|.11)

to= (uit1) (ut2) o () (m+A-p+1)
(}ll‘f‘... ].11_1+1) m
(f-Agt1) f

Then ‘e’ defined by e = eX ey is ‘e’ is an idempotent in
the group algebra of G corresponding to the irreducible
¢80 .

2.2. Definition:-

The pair (A, p) is p - extermal if [A/ pu] has no pair of
squares in the same row or the same column.

If (A, W) is p — extremal, then the tableau t, looks like.

(m+1)
(m+2)
(m+3)

So

Any lattice permutation of length 2k and shape 1
constitutes a littlewood — Richardson filling of [A/ p]. So
for alln we have,
gun= Ty
Thus,m(p,A) = Y f,
neven
=1.3...(2k-1).

Hence the multiplicity m(pA) equals the number of 1-
factors on 2k points.

2.3. Note:-

For any pair (A1) we have gy, <f;,

In general m(p,A)<1.3.......... 2k -1).

Equality is achieved if and only if (A,u) is p -extremal.

2.4, Definition:
Let A be a 1- factor with 2k points. Define the (m, k)
partial 1- factor V, as follows:

1. V, has free points 1,2............ m. The free
point j has label j.
2. For every edge (u,v) of A we have the edge

(m+u, m+v) of V,
The following lemma will not only show that the ev,
linearly independent, it will also greatly streamline our
computation. This result is difficult to prove in the case of
general pairs(A,LL).

2.5. Lemma:
Let (A,u) be p-extremal and define t,, sy as above. Let v, o,
y*and o be in C, Ry, Cy, and Rs,, respectively (so, sgn (y)
sgn (v’) (yo, y’6) is one of the terms occurring in the
idempotent e = e, X €,). Suppose that.

(y0,7’6) VA =VA,, where A and A, are 1-factors. Then
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1. A=A,

2. v and o both fix ty / sy point wise.

3. y restricted to sy equals ¥’ and o restricted to sy
equals ¢’ .

In particular, {eV, : A is a 1- factor with 2k points} is a
basis for eV .

Proof:

Let Y’ ¢ acts on an mk Partial 1-factor by changing the
labels on the free points by (Y, ¢).

Since the free points of both A and A, are 1,2 ,...,m, it
follow that yo Preserves the sets { 1,2,..,m} and
{m+1,...f}.

In t, each square m+u(u=1,2,...,2k) is at the right-hand end
of the row containing it and at the bottom of the column
containing it.

So ¢ moves the point mtu weakly to the left. Since the
image of m+u under yc is in the set {m+l,...f}, the
permutation y must then move o(m+u) down to the bottom
of the column it occupies.

Thus, (yo) (m+u) = m+v, where v>u.

It follows that yo fixes the set {m+1,..,f} pointwise.

Now, consider yo x y* ¢ on s,. The point j is moved by
(y0, 7’0 ) to yo(j) and its label is changed to (Y’ )j.

Since (Y0, 1’0 ) Vs = V, we have (yo)j = (y’o ) j for all j.
Thus, yo = v’6", so y=y’ and ¢ = ¢' where these last three
equalities refer to yo, y and o restricted to the points of s,.
Suppose X areV,=0.Then X a,V,=0,and so all a,=0,as the
V, are linearly independent.

Thus the set { eV,} is a basis.

2.6. Definition:
Let (a;,b;)(i=1,2,...,2k) be the co-ordinates of the squares of
[AMu].For each i define sets CY<C ,, and RYcR,, as
follows:
1. CY contains the identity permutation as well as the (aj.;)
involutions y;; which exchange the elements of t, in squares
(ai,bi) and (j,b;)
2. RY contains the identity permutation as well as the (b;.)
involutions y;j which exchange the elements of t; in squares
(a;,b;) and (a;))
Let C be the set of all products y"...y*, where y* €C? and
let R be the set of all products 6'"... 6 where c €R"?
C and R are subsets of C,gand Ry of sizes.
| C | = apas...axy, | R| = b]bz...bzk,
Hanlon and Wales algorithm:
Let G be a finite group with irreducible representation
@, D Let @ be a representation of G on a complex vector
space  V  which decomposes into irreducible as
O=Emd;i:1 toc
Let Z be a linear transformation of V which commutes
with the action of G. Then Z is similar to a matrix which is
a direct sum over i of matrices Z;, where Z; is an m; X m;
matrix repeated in the direct sum deg(d;)times. Moreover,
Z; can be computed as follows:
Step 1 : Choose a complete set of Primitive orthogonal
idempotents

e, : 1I<u<c, 1<V <deg(®,) in the group algebra CG.
Step 2: Find m; vectors vi....... Vmi € V such that d)(el(i)) Vini
are linearly independent.
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Step 3:-

Let v, be the subspace of V spanned by ®(e;") v, ...
CD(e](i)) Vi The space vi¥ is Z- invariant and Z; is the
restriction of Z to Vl(i).

The above algorithm will compute the Va, Va entry in
Zyu(x) as a sum of terms of the form 1={(yo0,y’c’) Va,,
Va1} where yeC,ceR, v’ e€Cy,6°€Ry. For a fixed pair (r,
6) € C X R there is atmost one pair (r', 6°) € Cy, X Ry, for
which t is nonzero.

We next write down a method for computing 7= Y ¢
given (Yo ) Va, and V,y, In the description below we
will assume that the in put is 61= Y 6 V,, and §; = V.

2.7. Definition:

Let 61 and 6, be (m k) partial 1- factors. Define an element
n (01,6,) in the group algebra CS, according to the
following algorithm.

For each i in the set { 1,2,...m} find the unique path in 1
vd, which begins at the free point of &1 labelled i and ends
at some other free point y. If y is a free point of 81, then
1(31,0,)=0 and algorithm stops. Otherwise, y is a free point
of §,.Let  (81,8,)(i) be the label on y.

When this algorithm finishes, we will have either, m(51,9,)
= 0 or else n(31,5;) € S,,. For 81,6, both (m, k) partial 1-
factors and r a standard young tableau of size m, define
[v(31,3,) by

[v(81,8,)= |0 if n(81,8,) = 0 the coefficient of 7(51,5,)

in the young symmetrizer
e, if n(61,8,) € Sy,

2.8. Lemma:
Let Y =Y" .. Y® be in C and 6 = ¢V .... 6™ are not
identity. Then [ 8o(Y 6 Vs, Va)) =0
Proof:-
Fix i such that Y =(u, b;) with u<a; and ¢"” = (a;,v)with V<
b;.
Let a and P be the labels in the squares (u, b;) amd (a;,V) of
t,.
The row permutation ¢ moves the label B to the corner
square (aj, by).
Then the column permutation Y moves the label to the
square (u, b;).
So in Y 6 V,, v V,, the path beginning at the free point
labeled B in Y 6 V,, has length 0 and ends at the same
point of V,; which is a free point labeled a.
SO, s (Y o VA2, VAI) (B) = 0.
But the corner Square (a;, b;) does not exist in s,, so (Y ¢
Va2, Vao) moves B from position (a;,V) to (U, b;) where b; >
na;.
It is easy to see that such a permutation cannot be written in
the form Y ¢ where

Y €Tandoc € Ry, -
S0, (Se (Y 6 Vaz, Vai, )=0.
This couplets the proof.
2.9. Note:
Let S denote the set of Pairs (Y o) with Y=YV... Y™ € C
and 6 = 6" ... 6®™ € R Such that 6" is the identity
wherever Y is not the identity.
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The size of Sis | S| = n(ai+bi-1).
2.10.Theorem:
The following algorithm compute the A;,A;jentry in Z; ,(x).
Algorithm for each pair (y,5)€0d.
1.Compute |—SO (Yo Vaj,Vai ).
2.Compute the number of cycles N in YoV jUVy; .
3.Add Sgn(y)lso (yoVa,Vai XN to the current value of
Z}L’H(X).
Before proving this algorithm
2=(6,5,4,3,2,1) and p=(5,4,3,2,1).
The size of original matrix Z,,,(x) is a whopping (21)!/48.
The submatrix Z, ,(x) is 15x15. The six squares of [y/u]
have
co-ordinates (1,6),(2,5),(3,4),(4,3),(5,2) and (6,1), so the
size of S is 6°.
Thus each entry of Z, ,(x) is computed with 6° passes
through the main loop of the algorithm in above theorem.
In practice,this matrix Z; ,(x) was computed in about one
hour of CPU time on a CRAY-2.
In general,we must perform the main loop in the above
algorithm 7(a;+b;-1) times.This main loop is carried out in
O(f+2aj(ajt1))steps.
So, the above Theorem gives a method to compute each
entry of Z; ,(x) in 0{ m(a;+b;-1) (f+2a;(aj+1)} steps.
Proof:
Let e= ¢yt be the young symmetrizer indexed by s,.
According to Theorem, Let G be a finite group with
irreducible representation @, @, Let @ be a representation
of G on a complex vector space V which decomposes into
irreducible as ®=Xm;®;;i:1to ¢
Let Z be a linear transformation of V which commutes
with the action of G. Then Z is similar to a matrix which is
a direct sum over i of matrices Z;, where Z; is an m; X myj
matrix repeated in the direct sum deg(d;)times. Moreover,
Z; can be computed as follows:
Step 1 : Choose a complete set of Primitive orthogonal
idempotents

e,V : ISu<c, 1<V <deg(®,) in the group algebra CG.
Step 2: Find m; vectors v....... Vmi €V such that CD(el(')) Vini
are linearly independent.
Step 3:-
Let v, be the subspace of V spanned by ®(e,”) v, ...
q)(e1<i>) V- The space vl(i) is Z- invariant and Z; is the
restriction of Z to vl(i).
the matrix Z,,x(x) preserves the subspace {eva:A is a 1-
factor of size 2k}.By Lemma, Let (A,1) be p-extremal and
define ty, sy as above. Let v, o, ¥’ and o be in Cio Ri Coo
and Rs,, respectively (so, sgn (y) sgn (7’) (yo, v’6) is one of
the terms occurring in the idempotent e = ¢, X €,,). Suppose
that.

(yo, y’c’) VA =VA,, where A and A, are 1-factors. Then

4. A=A,

consider the case

5. v and o both fix t, / sy point wise.
6. y restricted to sy equals ¥’ and o restricted to sy
equals ¢’ .

In particular, {eV, : A is a 1- factor with 2k points} is a
basis for eV .

the co-oeficient of v,; in eva;is 0 for i#j and is | Ryl | Cy for
i=j.
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so the i,j entry of Z; ,(x) is (1/ | Ryl | Cso |) times the co-
efficient of v, in Z, ;(X)( eV4j).

Thus
(Z5.1 (X)) i = 1
——————(evaj, Vai)
| RsO| | CsO ‘
= 1
———— ¥ Sgn(y)
| RsO| | CSO‘ YGCtO
ceRy

= X Sgn(y){(yo,y’s’) Vai
’Y’ECS()
c’eRy

= X X Samls (Yo V4 Vai ) (Yo VajVai )
YEC ceR
This equality follows from the definition [ go. we have
(Zr)sini = L Sgn)lso 6V Vai) 16V, Vai)-
(v, 0)eS

This completes the proof.
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CONCLUSION:

I have tried to give a brief sketch of some of the main ideas
underlying the dynamically growing field of Brauer
Centralizer Algebra. It is the natural Convergence of ideas
from many areas of mathematics such as algebra,
combinatorics, with those from computers science, such as
algorithms, data structures. I feel confident that the current
trend of studying Brauer Algebra will continue to suggest
new classes of problems which are can continue for further
enrichment of his knowledge.
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